Bulk Downloading Adobe Analytics Data

This blog post also serves as release notes for RSiteCatalyst v1.4.9, as only one feature was added (batch report request and download). But it’s a feature big enough for its own post!

Recently, I was asked how I would approach replicating the market basket analysis blog post I wrote for 33 Sticks, but using a lot more data. Like, months and months of order-level data. While you might be able to submit multiple months worth of data in a single RSiteCatalyst call, it’s a lot more elegant to request data from the Adobe Analytics API in several calls. With the new batch-submit and batch-receive functionality in RSiteCatalyst, this process can be a LOT faster.

Non-Batched Method

Prior to version 1.4.9 of RSiteCatalyst, API calls could only be made in a serial fashion:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
library(RSiteCatalyst)
library(dplyr)

SCAuth(Sys.getenv("USER", ""), Sys.getenv("SECRET", ""))

combined_orders <- data.frame()
for(d in seq(as.Date("2016-06-01"), as.Date("2016-06-30"), by = "day")){

  d_ <- as.character(as.Date(d, origin = "1970-01-01"))
  print(d_)

  order_details <- QueueRanked(
    reportsuite.id = "reportsuite",
    date.from = d_,
    date.to = d_,
    elements = c('evar13', 'product'),
    metrics = c('revenue', 'units', 'orders'),
    top = c(50000, 10000),
    interval.seconds = 60
  )

  order_details$order_date <- d_
  combined_orders <- rbind.fill(combined_orders, order_details)
  rm(order_details)

}

The underlying assumption from a package development standpoint was that the user would be working in an interactive fashion; submit a report request, wait to get the answer back. There’s nothing inherently wrong with this code from an R standpoint that made this a slow process, you just had to wait until one report was calculated by the Adobe Analytics API until the next one was submitted.

Batch Method

Of course, most APIs can process multiple calls simultaneously, and the Adobe Analytics API is no exception. Thanks to user shashispace, it’s now possible to submit all of your report calls at once, then retrieve the results:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
queued <- list()
for(d in seq(as.Date("2016-06-01"), as.Date("2016-06-30"), by = "day")){
  d_ <- as.character(as.Date(d, origin = "1970-01-01"))

  print(d_)

  reportid <- QueueRanked(
    reportsuite.id = "reportsuite",
    date.from = d_,
    date.to = d_,
    elements = c('evar13', 'product'),
    metrics = c('revenue', 'units', 'orders'),
    top = c(50000, 10000),
    interval.seconds = 1,
    enqueueOnly = TRUE
  )

  queued <- cbind(queued, reportid)

}

queued_df <- data.frame()
for (i in queued){
  queued_df <- bind_rows(queued_df, GetReport(i))
}

This code is nearly identical to the serial snippet above, except for 1) the addition of the enqueueOnly = TRUE keyword argument and 2) lowering the interval.seconds keyword argument to 1 second instead of 60. When you use the enqueueOnly keyword, instead of returning the report results back, a Queue* function will return the report.id; by accumulating these report.id values in a list, we can next retrieve the reports and bind them together using dplyr.

Performance gain: 4x speed-up

Although the code snippets are nearly identical, it is way faster to submit the reports all at once then retrieve the results. By submitting the requests all at once, the API will process numerous calls at once, and while you are retrieving the results of one call the others will continue to process in the background.

I wouldn’t have thought this would make such a difference, but retrieving one month of daily order-level data went from taking 2420 seconds to 560 seconds! If you were to retrieve the same amount of daily data, but for an entire year, that would mean saving 6 hours in processing time.

Keep The Pull Requests Coming!

The last several RSiteCatalyst releases have been driven by contributions from the community and I couldn’t be happier! Given that I don’t spend much time in my professional life now using Adobe Analytics, having improvements driven by a community of users using the library daily is just so rewarding.

So please, if you have a comment for improvement (and especially if you find a bug), please submit an issue on GitHub. Submitting questions and issues to GitHub is the easiest way for me to provide support, while also giving other users the possibility to answer your question before I might. It will also provide a means for others to determine if they are experiencing a new or previously-known problem.

  • Self-Service Adobe Analytics Data Feeds!
  • RSiteCatalyst Version 1.4.10 Release Notes
  • WordPress to Jekyll: A 30x Speedup
  • Bulk Downloading Adobe Analytics Data
  • Adobe Analytics Clickstream Data Feed: Calculations and Outlier Analysis
  • Adobe: Give Credit. You DID NOT Write RSiteCatalyst.
  • RSiteCatalyst Version 1.4.8 Release Notes
  • Adobe Analytics Clickstream Data Feed: Loading To Relational Database
  • Calling RSiteCatalyst From Python
  • RSiteCatalyst Version 1.4.7 (and 1.4.6.) Release Notes
  • RSiteCatalyst Version 1.4.5 Release Notes
  • Getting Started: Adobe Analytics Clickstream Data Feed
  • RSiteCatalyst Version 1.4.4 Release Notes
  • RSiteCatalyst Version 1.4.3 Release Notes
  • RSiteCatalyst Version 1.4.2 Release Notes
  • Destroy Your Data Using Excel With This One Weird Trick!
  • RSiteCatalyst Version 1.4.1 Release Notes
  • Visualizing Website Pathing With Sankey Charts
  • Visualizing Website Structure With Network Graphs
  • RSiteCatalyst Version 1.4 Release Notes
  • Maybe I Don't Really Know R After All
  • Building JSON in R: Three Methods
  • Real-time Reporting with the Adobe Analytics API
  • RSiteCatalyst Version 1.3 Release Notes
  • Adobe Analytics Implementation Documentation in 60 Seconds
  • RSiteCatalyst Version 1.2 Release Notes
  • Clustering Search Keywords Using K-Means Clustering
  • RSiteCatalyst Version 1.1 Release Notes
  • Anomaly Detection Using The Adobe Analytics API
  • (not provided): Using R and the Google Analytics API
  • My Top 20 Least Useful Omniture Reports
  • For Maximum User Understanding, Customize the SiteCatalyst Menu
  • Effect Of Modified Bounce Rate In Google Analytics
  • Adobe Discover 3: First Impressions
  • Using Omniture SiteCatalyst Target Report To Calculate YOY growth
  • Google Analytics Individual Qualification (IQ) - Passed!
  • Google Analytics SEO reports: Not Ready For Primetime?
  • An Afternoon With Edward Tufte
  • Google Analytics Custom Variables: A Page-Level Example
  • Xchange 2011: Think Tank and Harbor Cruise
  • Google Analytics for WordPress: Two Methods
  • WordPress Stats or Google Analytics? Yes!
  • Building a Data Science Workstation (2017)
  • JuliaCon 2015: Everyday Analytics and Visualization (video)
  • Vega.jl, Rebooted
  • Sessionizing Log Data Using data.table [Follow-up #2]
  • Sessionizing Log Data Using dplyr [Follow-up]
  • Sessionizing Log Data Using SQL
  • Review: Data Science at the Command Line
  • Introducing Twitter.jl
  • Code Refactoring Using Metaprogramming
  • Evaluating BreakoutDetection
  • Creating A Stacked Bar Chart in Seaborn
  • Visualizing Analytics Languages With VennEuler.jl
  • String Interpolation for Fun and Profit
  • Using Julia As A "Glue" Language
  • Five Hard-Won Lessons Using Hive
  • Using SQL Workbench with Apache Hive
  • Getting Started With Hadoop, Final: Analysis Using Hive & Pig
  • Quickly Create Dummy Variables in a Data Frame
  • Using Amazon EC2 with IPython Notebook
  • Adding Line Numbers in IPython/Jupyter Notebooks
  • Fun With Just-In-Time Compiling: Julia, Python, R and pqR
  • Getting Started Using Hadoop, Part 4: Creating Tables With Hive
  • Tabular Data I/O in Julia
  • Hadoop Streaming with Amazon Elastic MapReduce, Python and mrjob
  • A Beginner's Look at Julia
  • Getting Started Using Hadoop, Part 3: Loading Data
  • Innovation Will Never Be At The Push Of A Button
  • Getting Started Using Hadoop, Part 2: Building a Cluster
  • Getting Started Using Hadoop, Part 1: Intro
  • Instructions for Installing & Using R on Amazon EC2
  • Video: SQL Queries in R using sqldf
  • Video: Overlay Histogram in R (Normal, Density, Another Series)
  • Video: R, RStudio, Rcmdr & rattle
  • Getting Started Using R, Part 2: Rcmdr
  • Getting Started Using R, Part 1: RStudio
  • Learning R Has Really Made Me Appreciate SAS