WordPress to Jekyll: A 30x Speedup

About a month ago, I switched this blog from WordPress hosted on Bluehost to Jekyll on GitHub Pages. I suspected moving to a static website would be faster than generated HTML via PHP, and it is certainly cheaper (GitHub Pages is “free”). But it wasn’t until I needed a dataset for doing some dataset visualization development that I realize how much of an improvement it has been!

Packages, Packages, Packages

With the release of v0.5 of Julia, I’ve been working (less) on updating my packages and making new packages (more), because making new stuff is more fun than maintaining old stuff! One of the packages I’ve been building is for the ECharts visualization library (v3) from Baidu. While Julia doesn’t necessarily need another visualization library, visualization is something I’m interested in and learning is easier when you’re solving problems you like. And since the world doesn’t need another Iris example, I decided to share some real world website performance data :)

Line Chart

One of the first features I developed for ECharts.jl was X-Y charts, which I posit is the most common chart type in business. One thing that is great about the underlying ECharts JavaScript library is that interactivity is really easy to achieve:

using ECharts, DataFrames

#Read in data
df = readtable("/assets/data/website_time_data.csv")

#Make data two different series that overlap, so endpoint touches
df[:pre] = [(x[1] <= "2016-09-06" ? x[2] : nothing) for x in zip(df[:date], df[:loadtime_ms])]
df[:post] = [(x[1] >= "2016-09-06" ? x[2] : nothing) for x in zip(df[:date], df[:loadtime_ms])]

#Graph code
l = line(df[:date], hcat(df[:pre], df[:post]))
l.ec_width = 800
seriesnames!(l, ["loadtime_ms", "post"])
colorscheme!(l, palette = ("acw", "FlatUI"))
yAxis!(l, name = "Load time in ms")
title!(l, text = "randyzwitch.com",
          subtext = "Switching from WordPress on Bluehost to Jekyll on GitHub (2016/09/06)")
toolbox!(l, chartTypes = ["bar", "line"])

Even though I switched to Jekyll on WordPress on 9/6/2016, it appears that the page cache for Google Webmaster Tools didn’t really expire until 9/12/2016 or so. At the average case, the load time went from 1128ms to 38ms! Of course, this isn’t really a fair comparison, as presumably GitHub Pages runs on much better hardware than the cheap Bluehost hosting I have, and I didn’t reimplement most of the garbage I had on the WordPress version of the blog. But from a user-experience standpoint, good lord what an improvement!

Box Plots

Want to test out further functionality, here are some box plots of the load time variation:

using ECharts, DataFrames

#Read in data
df = readtable("/Users/randyzwitch/Desktop/website_load_time.csv")
df[:pre] = [(x[1] <= "2016-09-06" ? x[2] : nothing) for x in zip(df[:date], df[:loadtime_ms])]
df[:post] = [(x[1] >= "2016-09-12" ? x[2] : nothing) for x in zip(df[:date], df[:loadtime_ms])]

#Remove nulls
pre = [x for x in df[:pre] if x != nothing]
post = [x for x in df[:post] if x != nothing]

#Graph code
b = box([pre, post], names = ["WordPress", "Jekyll"])
b.ec_width = 800
colorscheme!(b, palette = ("acw", "VitaminC"))
yAxis!(b, name = "Load time in ms", nameGap = 50, min = 0)
title!(b, text = "randyzwitch.com",
           subtext = "Switching from WordPress on Bluehost to Jekyll on GitHub (2016/09/06)")

Usually, a box plot comparison that is as smushed as the Jekyll plot vs the WordPress one would be a poor visualization, but in this case I think it actually works. The load time for the Jekyll version of this blog is so quick and so consistent that it barely registers as an outlier if it were WordPress! It’s crazy to think that the -1.5 * IQR time for WordPress is the mean/median/min load time of Jekyll.

Where To Go Next?

This blog post is really just an interesting finding from my experience moving to Jekyll on GitHub. As it stands now, ECharts.jl is stil in pre-METADATA mode. Right now, I assume that this would be a useful enough package to submit to METADATA some day, but I guess that depends on how much further I get smoothing the rough edges. If there are people who are interested in cleaning up this package further, I’d absolutely love to collaborate.

  • Using RSiteCatalyst With Microsoft PowerBI Desktop
  • RSiteCatalyst Version 1.4.14 Release Notes
  • RSiteCatalyst Version 1.4.13 Release Notes
  • RSiteCatalyst Version 1.4.12 (and 1.4.11) Release Notes
  • Self-Service Adobe Analytics Data Feeds!
  • RSiteCatalyst Version 1.4.10 Release Notes
  • WordPress to Jekyll: A 30x Speedup
  • Bulk Downloading Adobe Analytics Data
  • Adobe Analytics Clickstream Data Feed: Calculations and Outlier Analysis
  • Adobe: Give Credit. You DID NOT Write RSiteCatalyst.
  • RSiteCatalyst Version 1.4.8 Release Notes
  • Adobe Analytics Clickstream Data Feed: Loading To Relational Database
  • Calling RSiteCatalyst From Python
  • RSiteCatalyst Version 1.4.7 (and 1.4.6.) Release Notes
  • RSiteCatalyst Version 1.4.5 Release Notes
  • Getting Started: Adobe Analytics Clickstream Data Feed
  • RSiteCatalyst Version 1.4.4 Release Notes
  • RSiteCatalyst Version 1.4.3 Release Notes
  • RSiteCatalyst Version 1.4.2 Release Notes
  • Destroy Your Data Using Excel With This One Weird Trick!
  • RSiteCatalyst Version 1.4.1 Release Notes
  • Visualizing Website Pathing With Sankey Charts
  • Visualizing Website Structure With Network Graphs
  • RSiteCatalyst Version 1.4 Release Notes
  • Maybe I Don't Really Know R After All
  • Building JSON in R: Three Methods
  • Real-time Reporting with the Adobe Analytics API
  • RSiteCatalyst Version 1.3 Release Notes
  • Adobe Analytics Implementation Documentation in 60 Seconds
  • RSiteCatalyst Version 1.2 Release Notes
  • Clustering Search Keywords Using K-Means Clustering
  • RSiteCatalyst Version 1.1 Release Notes
  • Anomaly Detection Using The Adobe Analytics API
  • (not provided): Using R and the Google Analytics API
  • My Top 20 Least Useful Omniture Reports
  • For Maximum User Understanding, Customize the SiteCatalyst Menu
  • Effect Of Modified Bounce Rate In Google Analytics
  • Adobe Discover 3: First Impressions
  • Using Omniture SiteCatalyst Target Report To Calculate YOY growth
  • PyData NYC 2018: End-to-End Data Science Without Leaving the GPU
  • Data Science Without Leaving the GPU
  • Getting Started With OmniSci, Part 2: Electricity Dataset
  • Getting Started With OmniSci, Part 1: Docker Install and Loading Data
  • Parallelizing Distance Calculations Using A GPU With CUDAnative.jl
  • Building a Data Science Workstation (2017)
  • JuliaCon 2015: Everyday Analytics and Visualization (video)
  • Vega.jl, Rebooted
  • Sessionizing Log Data Using data.table [Follow-up #2]
  • Sessionizing Log Data Using dplyr [Follow-up]
  • Sessionizing Log Data Using SQL
  • Review: Data Science at the Command Line
  • Introducing Twitter.jl
  • Code Refactoring Using Metaprogramming
  • Evaluating BreakoutDetection
  • Creating A Stacked Bar Chart in Seaborn
  • Visualizing Analytics Languages With VennEuler.jl
  • String Interpolation for Fun and Profit
  • Using Julia As A "Glue" Language
  • Five Hard-Won Lessons Using Hive
  • Using SQL Workbench with Apache Hive
  • Getting Started With Hadoop, Final: Analysis Using Hive & Pig
  • Quickly Create Dummy Variables in a Data Frame
  • Using Amazon EC2 with IPython Notebook
  • Adding Line Numbers in IPython/Jupyter Notebooks
  • Fun With Just-In-Time Compiling: Julia, Python, R and pqR
  • Getting Started Using Hadoop, Part 4: Creating Tables With Hive
  • Tabular Data I/O in Julia
  • Hadoop Streaming with Amazon Elastic MapReduce, Python and mrjob
  • A Beginner's Look at Julia
  • Getting Started Using Hadoop, Part 3: Loading Data
  • Innovation Will Never Be At The Push Of A Button
  • Getting Started Using Hadoop, Part 2: Building a Cluster
  • Getting Started Using Hadoop, Part 1: Intro
  • Instructions for Installing & Using R on Amazon EC2
  • Video: SQL Queries in R using sqldf
  • Video: Overlay Histogram in R (Normal, Density, Another Series)
  • Video: R, RStudio, Rcmdr & rattle
  • Getting Started Using R, Part 2: Rcmdr
  • Getting Started Using R, Part 1: RStudio
  • Learning R Has Really Made Me Appreciate SAS